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The eigenvalue equation and the sets of linear equations that occur in linear and nonlinear 
response function calculations have a specific paired structure. We have developed iterative 
algorithms which utilize this structure to eficiently solve the equations. The algorithms have 
been designed so they do not require the matrices to be explicitly available, which makes it 
possible to perform accurate calculations with a dimension of maybe 106. Numerical tests 
show convergence behavior superior to previously suggested algorithms. 0 1988 Academic Press, 

Inc. 

I. INTRODUCTION 

The simplest response function model is the time-dependent Hartree-Fock 
(TDHF), also called the random phase approximation (RPA), which is obtained by 
analyzing the response of a single configuration self-consistent-field (SCF) state to 
an external perturbation [ 11. Transition properties and second and higher order 
molecular response properties can in principle be calculated very efficiently using a 
response function approach [ 11. Response function models have also been derived 
for more sophisticated electronic wave functions, such as a multiconfigurational 
MCSCF state [2-4] and a coupled cluster state [S], and also using a perturbation 
approach [6]. Common features of these models are (1) a generalized eigenvalue 
problem with a specific paired structure must be solved to get transition properties 
and (2) a set of linear equations with the same structured matrices must be solved 
to get the second and higher order properties. Furthermore the matrices may be 
very large, approximately lo6 and in a few years maybe up to 10’. It is therefore of 
crucial importance for the response function approach to have efficient methods for 
solving these two types of equations, preferably methods which do not require 
explicit matrices. We describe such a new algorithm for each of the two types in 
Section II, and the efficiency is demonstrated in Section III by numerical examples. 
We denote the generalized eigenvalue equation, which is encountered in time- 
dependent response theory, the linear response (LR) eigenvalue equation and the 
sets of linear equations, which are encountered, for the LR equations. 
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For ground state calculations the LR eigenvalue equation may be expressed as 
two symmetric eigenvalue problems of half the dimension [l]. For small dimen- 
sions the solutions are straightforwardly obtained this way, but the dimension of 
the matrices prohibits this approach even for many RPA calculations of interest. 
Iterative RPA algorithms have therefore been developed to find the lowest few roots 
[8, lo] (the lowest excitation energies) which usually are those of chemical interest. 
These algorithms are similar to the iterative algorithms [ 1 l-181 used to find the 
lowest few eigenvalues of the symmetric eigenvalue problem occurring in con- 
figuration interaction (CI) studies of correlation. The developed iterative RPA 
algorithms solve the RPA eigenvalue equation as a nonsymmetric eigenvalue 
problem without using the paired structure [8, lo]. 

In this paper we propose iterative algorithms, which employ the paired structure, 
for obtaining the interesting roots of the LR eigenvalue equations and for solving 
the LR equations. The iterative algorithms consist in expanding a basis of 
orthonormal trial vectors and projecting the exact equations down on this basis 
using only matrix times vector operations. The paired structure of the LR matrices 
defines a paired vector for each trial vector, and each time one matrix times vector 
operation has been carried out we also know the matrix times the paired vector. 
The process of adding new pairs of trial vectors is continued until the desired 
root/property is adequately described in the basis of trial vectors. We have a com- 
mon framework for all of the equations because the same matrices enter the LR 
eigenvalue equation and the LR equations irrespectively of the type of perturbation. 
This enables us to reuse information gathered in one such calculation in any other 
LR calculation for that state vector. 

For the eigenvalue problem the algorithm may be viewed as a generalization of 
the Davidson-Liu algorithm [14, 151 for the symmetric eigenvalue problem. In 
normal cases, where the second energy derivative matrix (one of the linear response 
matrices) is positive definite, complex eigenvalues cannot show up in our reduced 
LR eigenvalue equation, furthermore the eigenvalues in the reduced space will 
converge monotonically and be upper bounds to the exact eigenvalues [19]. In the 
previously developed algorithms; where nonsymmetric eigenvalue equations are 
solved, complex eigenvalues can show up in the reduced space, indicating the 
paired trial vector is missing, and suggesting a slower and potentially unreliable 
convergence. 

Summarizing, we get two trial vectors for the cost of one, the reduced (projected) 
problems have the same paired structure as the full equations which stabilize the 
convergence processes, and we may reuse information from one property for other 
properties. 

In Section 1I.a we present our new algorithm for the LR eigenvalue problem and 
in Section 1I.b we describe a very similar algorithm for the LR property equations 
based on a generalization of the conjugate gradient method [20]. In Section III we 
demonstrate by numerical examples the convergence characteristics of the 
algorithms. Section IV contains some concluding remarks. 
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II. ALGORITHMS 

1I.a. The Linear Response Eeigenvalue Equation 

The linear response (LR) eigenvalue equation for a real wave function is in its 
most general form [4] 

(1) 

where the matrices 6, ,B, and C are symmetric and ,d is antisymmetric. For MCSCF 
wave functions A, ,B, &, and ,d are defined in Eqs. (5.62), (5.63), (5.65), and (5.66), 
respectively, of Ref. [4]. For a closed shell Hartree-Fock wave function (the 
random phase approximation) ,d is the zero matrix and & is the unit matrix. A 
simple rearrangement of Eq. (1) gives 

(2) 

which shows that --o is an eigenvalue corresponding to the eigenvector (:$). If we 
assume that the eigenvector (:2) can be normalized to one over the metric (3’ tZ), 

then the eigenvector (:;) is normalized to minus one: 

(3) 

(4) 

The eigenvalues corresponding to the eigenvectors that can be normalized to one 
approximate the excitation energies of the molecular system [ 11. 

For large dimensions of the LR matrices it is necessary to find the solution 
vectors using direct methods, that is, with algorithms that just require the two 
linear transformations 

(5) 

(6) 

to be carried out. In Section V1.B of Ref. [43 we showed how the linear transfor- 
mations may be implemented for MCSCF wave functions without explicitly setting 
up the linear response matrices. The topic of this section is to describe an algorithm 
which finds the lowest roots of Eq. (1) using a sequence of the linear transfor- 
mations in Eqs. (5) and (6). 
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In the algorithm we describe for determining the few lowest roots of Eq. (1) we 
assume that in the nth iteration we have a set of k trial vectors 

and have carried out the linear transformations in Eqs. (5) and (6) 

(7) 

(8) 

(9) 

Because of the structure of the two LR matrices the two linear transformations are 
also known for the vectors 

The linear transformation in Eq. (5) gives 

and the linear transformation in Eq. (6) gives 

{-(Y;)*? -( :3,?.? -( :;,,i. (12) 

We assume that the combined set of paired trial vectors in Eqs. (8) and (11) have 
been orthonormalized. The optimal linear combination of the basis vectors in 
Eqs. (8) and (11) is determined from the reduced linear response eigenvalue 
equation 

(13) 

where the matrices dR, _BR, and &:” are symmetric and _dR is antisymmetric and 
defined as 

(14) 

(15) 
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(16) 

(17) 

The reduced 2k-dimensional eigenvalue equation for the basis vectors in Eqs. (7) 
and (10) can thus be set up based on knowledge of the vectors in Eqs. (7)-(9). 

If we want to determine the jth excitation energy then the jth root w,” of the 
reduced equation in Eq. (14) which satisfies positive normalization condition is an 

‘XR 
approximation to that eigenvalue and (,-6) is the best approximation to the eigen- 
vector within the basis described by Eqs?(7) and (10). 

Convergence of the jth root is obtained when the norm of the residual 

(18) 

is smaller than a given tolerance. 
A straightforward extension of the Davidson algorithm [ 141 to the more general 

eigenvalue equation in linear response gives the trial vector for the (n + 1)th 
iteration as 

(19) 

where ‘gj and “ij are diagonal matrices containing the elements 

‘dj,ii=A..-wRC.. I, I I, P-9 

*&=A..+&C.. II I II . (21) 

In Eq. (19) (:$) is considered to be a vector of the dimension of the LR eigenvalue 
equation in Eq. (7); that is, it is expanded in the original basis. 

For convenience the vector ($), + r is orthogonalized against the 2k previous trial 
vectors in Eqs. (7) and (10). The pair of new trial vectors, ($), + r and (z), + r, are 
also orthogonalized against each other using an orthonormalization scheme which 
preserves the paired structure. We use symmetric orthonormalization. All trial 
vectors in any iteration are then orthonormal with respect to the usual Euclidean 
norm. For the LR eigenvalue equation we could have used vectors orthonormal 
with respect to the LR metric (Eq. (3)), but then we would only be able to reuse 
those trial vectors for the LR linear equations in Section 1I.b (e.g., for frequency 
dependent polarizability) with great difficulty-in fact, we would then have to 
reorthonormalize the trial vectors with respect to the Euclidean norm. The optimal 
choice for efficiency is thus to use the Euclidean norm in the first place. 
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Several roots can be determined simultaneously by applying Eq. (19) for as many 
roots as desired (as described by Liu for the symmetric eigenvalue equation [ 151). 
The Xii values are one for all operators in the CSF space. Small Zji values may 
appear in the orbital space for operators which are mainly introduced to describe 
correlation effects. 

In Eq. ( 1) where ( fd J$ ) is considered as metric, the negative and the smallest 
positive eigenvalues which-satisfy a positive normalization condition (see Eq. (3)) 
are usually those of interest as they describe the lowest excitation energies. The LR 
Hessian matrix (f 2) may also be considered as metric [ 191 and the LR eigenvalue 
equation then reads 

(22) 

The eigenvalues of interest are now those of largest numerical value [19]. If we had 
based the algorithm on this equation instead of Eq. (1) we would have obtained the 
same sequence of trial vectors. We can thus use Eq. (22) to make statements about 
the convergence. For ground state calculations ($ z) is positive definite and the 
square of the eigenvalues may be obtained by solving a Hermitian eigenvalue 
problem (see, for example, Eq. (6.109) of Ref. [ 1 I). McDonald’s theorem then gives 
that the roots (all excitation energies are positive) of the reduced eigenvalue 
equation in Eq. (14) separate the roots of the eigenvalue equation in Eq. (7). A 
monotonic convergence towards the eigenvalues of Eq. (7) is therefore observed in 
each iteration when the dimension of the reduced space is increased. 

In order to elucidate the implementation of this algorithm a step-by-step descrip- 
tion is given in the Appendix. 

1I.b. Linear Response Equations 

The set of linear equations which has to be solved to determine response proper- 
ties for an external perturbation is 

(23) 

The matrices 4, B, z:, and 4 are the same as those appearing in the linear response 
eigenvalue equation in Eq. (1) and o is the frequency of the external perturbation. 
The elements of the vector 5: describe the nonoptimality (the gradient) of the wave 
function after the perturbation has been switched on. For an MCSCF wave 
function and a real perturbation C is equal to the vector (5) in Eqs. (5.11 k( 5.12) of 
Ref. [ 13. The + and - signs in the second component are used when the pertur- 
bation operator is imaginary and real, respectively. The vector (:g) describes the 
first-order correction to the wave function due to the external perturbation [4] and 
second-order molecular properties are determined as (c f c)( :$). 
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We now describe an iterative algorithm to solve Eq. (23) which finds the solution 
vector from a sequence of the linear transformations in Eqs. (5) and (6). We assume 
that in the nth iteration of the algorithm we have generated the set of k orthonor- 
ma1 vectors in Eq. (7) and that the linear transformations in Eqs. (5) and (6) have 
been carried out giving the vectors in Eqs. (8) and (9), respectively. As in the eigen- 
value case the linear transformations corresponding to the paired vectors in 
Eq. (10) are also known. The trial vectors in Eqs. (7) and (10) must be orthonor- 
mal. The optimal linear combination of the basis vectors in Eqs. (7) and (10) is 
then determined from the reduced set of linear equations 

where 4 R, BR, gR, and 4 R are defined in Eqs. (14k( 17) and 

Cf=(‘S ‘c;,, & . ( ) -- 

(24) 

(25) 

The vector (:fi) is the optimal solution within the set of basis vectors in Eqs. (7) 
and (10). - 

The accuracy of a solution vector may be measured in terms of the norm of the 
residual vector 

(26) 

Convergence is obtained when the norm of the residual is smaller than a specified 
tolerance. Trial vectors for the (n + 1)th iteration may be generated using a 
generalization of the conjugate gradient algorithm [20] 

(27) 

where f’ and f 2 are diagonal matrices with elements 

f:, = A,, -o&t, (28) 

f f,c = AM + ~~,c,c- (29) 

The vector (&+ f is orthogonalized against the 2k trial vectors of the nth iteration 
in Eqs. (7) and (10) and the new pair of trial vectors of the (n + 1)th iteration 
(:B)kC 1 and (z), + 1 are orthogonalized against each other using symmetric 
orthonormalization. The iterative procedure is continued until the norm of the 
residual is smaller than a specified tolerance. As starting vector we may use Eq. (27) 
with & equal to ($). When o in Eq. (23) is close to a resonance it is advan- 
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tageously first to locate the resonance from the linear response eigenvalue equation. 
The vectors which determine the resonance may then be used as starting vectors to 
solve the linear response equations. The resonance contribution to the solution is 
then contained in the initial basis of trial vectors. 

The solution vector to Eq. (23) can be used to determine second-order molecular 
properties as (‘2 ‘2)( +‘,). In Ref. [21] it is shown that the accuracy in the second- 
order property is squared in the residual. If several components are calculated of a 
second-order property (for example, the different components of the polarizability), 
it is also shown in Ref. [21] that the out-of-diagonal components of second-order 
properties have an accuracy squared in the residual if the same reduced space is 
used to span all the solution vectors. 

III. RESULTS 

To illustrate the efficiency of the proposed algorithms we compare it to the 
convergence characteristics of a previously reported RPA calculation on ethylene 
by Bouman et al. [7], and we report a new MCLR calculation on the Neon atom. 

The RPA calculation on ethylene was used by Bouman et al. [7] to illustrate the 
convergence characteristics of their algorithm. Details of geometry and basis set can 
be found there. In Table I we report the convergence characteristics of our new 
algorithm for finding the lowest 6 singlet states, and in Table II we report the 
corresponding characteristics for the algorithm of Bouman et al. derived from the 
results reported in Ref. [7]. The convergence in each iteration is measured as the 

TABLE I 

The Difference between the Eigenvalues of the Reduced RPA Equation and the Converged RPA 
Eigenvalues in a Sequence of Iterations for the Lowest 6 Singlet Excitations in Ethylene. 

Convergence to a Residual Tolerance 10-j. 

1(12) 0.0039027 0.0064854 0.0168965 0.0137942 0.0142670 0.0025675 
2(18) 0.0000884 0.0014301 0.002979 1 0.0009608 0.0003791 00300500 
WI O.OOOOOO8 0.0001017 O.OOOOOO6 0.0000265 o.OOOOO70 O.OOOOOO5 
4f30) O.OOOOOOO 0.OOOOO13 O.OOOOOOO O.OOOOO23 o.OOOOOO2 o.ooooooO 
WI o.OOoOOO1 o.OOooOO2 

a The fully converged excitation energies for the lowest 7 states are in au. 0.2626717, 0.2830822, 
0.2844209, 0.2898198, 0.3009313, 0.3224419, and 0.3233291, respectively. 

b The numbers in parentheses denote the number of linear transformations which is equal to half the 
dimension of the reduced space RPA matrices. 
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TABLE II 

The Difference Calculated by Bouman et al. [7] between the Eigenvalues of the Reduced RPA 
Equation and the Converged RPA Eigenvalues in a Sequence of Iterations for the 

Lowest 6 Singlet Excitations in Ethylene 

1 2 3 4 5 6 

1(12) 0.0052563 0.0083572 0.0182450 0.0139583 0.0092640 0.0015487 
2(18) 0.000475 1 0.0015831 0.0057538 0.0016486 0.0008344 0.0000712 
X24) 0.0000114 0.00012557 0.0000526 0.0001223 -0.0000219 O.OOOOO39 
4(301 o.OOOOO53 0.0000768 0.0000187 0.0000104 o.OOOOO42 <10-e 
5f35) 110-b 0.0001431 O.OOOOO98 0.0000021 O.OOOOO25 
(339) - 0.0000949 -0.0OOOcKl2 < 1o-6 < 1o-6 
7(41) o.OOoOO35 <10-e 
8142) < 1o-6 

a The numbers in parentheses denote the number of trial vectors which have been used. 

difference between the current approximate excitation energy (from the reduced 
space) and the converged excitation energy. We converge to a residual tolerance 
10p3, which leads to an accuracy of approximately lop6 in the excitation energies 
(as in the case of a symmetric eigenvalue problem as standard configuration 
interaction (CI)). Bouman et al. converge to a residual tolerance of 10p4; however, 
their residual is defined differently from ours and their tolerance also leads to 
approximately lop6 error in excitation energies. We note that our calculation con- 
verged using a total of 32 trial vectors while Bouman et al. used 42 trial vectors. 
More important for this rather small example, we observe from Table I that we 
obtain a monotonic decrease in the excitation energies towards the totally con- 
verged results, while in the calculation by Bouman et al. in Table II such a 
monotonic decrease is not always obtained. For example, the error in root 2 
increases from 0.000,076,8 in iteration 4 to 0.000,143,1 in iteration 5, and in 
iteration 6 the approximate excitation energy is 0.000,094,9 below the totally con- 
verged excitation energy. 

A RPA calculation is usually much simpler than a MCLR calculation because in 
the RPA calculation both the matrices ($ 5) and ( f tz) are diagonally dominant. 
In an MCLR calculation parts of these matrices have no diagonal dominance. In 
Tables III and IV we report convergence charististics of a MCLR calculation on the 
NE atom with 65 GTO’s [22]. All single double, triple, and quadruple excitations 
out of the 2s and 2p orbitals into the 3s and 3p orbitals are included in the 
configuration space. In Table III the convergence characteristic is given for a 
calculation of the lowest excitations of X’S+ ‘S and X’S --) ‘D symmetry. The 
calculations are carried out in the DZh subgroup and two components are therefore 
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TABLE III 

The Difference between the Eigenvalues of the Reduced MCLR Equation and the Exact MCLR 
Eigenvalues in a Sequence of Iterations for the Two Excitations of X’S + ‘5 

and X’S -+ ‘D Symmetry in the Ne Atom. Convergence to a Residual Tolerance lo- ’ 

l(l3) 0.1329207(2)” 0.1329207(3) 0,1319480(l) 0.1859297(5) 0.1859297(6) 0.1817246(4) 
2(l9) 0.0194656(l) 0.0194661(2) 0.0160613(3) 0.0404303(4) 0.0404309(5) 0.0549739(6) 
WI 0.0098700(l) 0.0098714(2) 0.0110460(3) 0.0240211(4) 0.0240221(5) O&+13698(6) 
4(3l) 0.0001223(1) 0.0001225(2) 0.0070920(3) 0.0007897(4) 0.0007907(5) 0.0233305(6) 
5(37) 0.0000111(1) 0.000011 l(2) 0.0001210(3) 0.0000272(4) 0.0000272(5) 0.0004029(6) 
6(43) O.OOOOO70(l) O.O000070(2) 0.0000458(3) O.OOOOO30(4) O.O000030(5) 0.0001180(6) 
7(47) 0.0000261(3) 0.0000019(4) O.O000019(5) 0.0000323(6) 
8(49) O.W00218(3) O.OCIOOO82(6) 
9(50) O.OoOOO65(6) 

a (1,2) and (4,5) are two components of the lowest two X’S -+ ‘D excitations with excitation energy 
0.6961506 a.u. and 0.755463 a.u., respectively; 3 and 6 are the lowest two X’S+ “S excitations with 
excitation energy 0.7087031 a.u. and 0.7593817 a.u., respectively. 

b The numbers in parentheses denote the dimension of the reduced space MCLR matrices. 
c The numbers in parentheses denote the order of the eigenvalues in the reduced space. 

included for each ‘D state. The dimension of the matrices (A, F, C, 4) is 291 of 
which 105 is of orbital type. The convergence is, as expected, slower than in the 
ethylene RPA calculation. Convergence to a residual tolerance of 1O-3 is obtained 
in 69 iterations. In the first iteration in Table III the order of the lowest ‘D and ‘S 
excitation energies is switched compared to the order in the converged calculation. 
The convergence in Table III is typically linear convergence and, as expected, 
monotonic towards the totally converged roots. In Table IV the convergence 
characteristic is given for a calculation on the lowest excitations of X’S --* ‘P, 
X’S + ‘F, and X’S -+ ‘H symmetry. The dimension of the MCLR matrices is 225 of 
which 79 is of orbital type. In the first three iterations in Table IV an incorrect 
order is obtained in the excitation energies. After iteration 3 the excitations of ‘F 
and ‘H symmetry have converged mainly due to small dimensions in these spaces 
and in the final six iterations all new trial vectors are of ‘P symmetry. At iteration 4 
a hitherto missing root shows up (the error in the excitation energy drops from 
0.11811145 to 0.0056951) and typical linear convergence is obtained from that 
iteration onwards. 

To demonstrate the efficiency of the iterative algorithm for solving the MC linear 
response equations we report in Table V the convergence characteristics of a fre- 
quency independent (w = 0) polarizability calculation on Ne. The initial trial vector 
was the property vector C divided by the diagonal LR matrix elements as described 
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in Eqs. (27)-(29). The calculation converged to a residual tolerance 10 P3 in 11 
iterations. The convergence characteristics of a calculation at frequency o = 0.1 a.u. 
using the same initial trial vector as in the w = 0 calculation is also given in 
Table V. The convergence characteristics of the w = 0 and o = 0.1 calculation are 
very similar and convergence is obtained in the same number of iterations. In 
Table V we also report the convergence characteristics of a o = 0.1 calculation 
where we have included the 11 trial vectors which were determined in the o = 0 
calculation, as initial trial vectors. Only four additional iterations are then required 
to obtain convergence to the threshold 10-3. It is thus, as expected, important with 
respect to computational efficiency to reuse the trial vectors when solving the linear 
response equations at a new close-lying frequency. 

When the frequency o in Eq. (23) is close to an excitation energy (a resonance) 
the matrix (t 5) - o( Td i ) is nearly singular and straightforward application of the 
generalized conjugate gradient algorithm will give slow convergence. To illustrate 
this point we report in Table VI the convergence characteristics obtained in a 
calculation with o = 0.6320 a.u. (the excitation energy is 0.6316). The calculation 
converges in 36 iterations which are significantly more iterations than the 11 
iterations required in the calculations at the frequencies 0.0 a.u. and in 0.1 au. 
(compare to Table V). In Table VI we also report the convergence characteristics 
which are obtained if we include the 12 vectors which determine the excitation 
energy to a residual tolerance lop3 as initial trial vector. Table VI shows that the 
use of the trial vectors from an excitation energy calculation reduces significantly 
the number of iterations which is required to obtain convergence. The excitation 
energy trial vectors eliminate the near singularity contribution in the solution vec- 
tor. In Table VI we also report a calculation where we, in addition to the excitation 
energy trial vectors, have included the trial vectors of the frequency independent 
calculation. These last trial vectors are seen to have basically no influence on the 
convergence in this case. 

IV. DISCUSSION 

A major advantage of our proposed eigenvalue algorithm is that although the LR 
eigenvalue problem is formally a generalized eigenvalue problem we can use the 
specific paired structure to obtain an algorithm which is just as stable and efficient 
as the Davidson-Liu [14, 151 algorithm for the normal symmetric eigenvalue 
problem. The algorithm and the analogous iterative algorithm for solving LR sets 
of linear equations are both solely based on the two linear transformations in 
Eqs. (5) and (6). As we envision LR matrices which may have a dimension of 
lo’-lo6 and larger this is an important part of the algorithms. For MCSCF wave 
functions we have shown how the two linear transformations can be calculated 
directly without explicit construction of the two matrices [4] and this is what 
makes it feasible to perform large-scale, accurate LR calculations. The linear trans- 
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formations will, by, far be the most CPU and IO demanding part of the calculation, 
and the primary emphasis in the algorithm design has therefore been to minimize 
the number of iterations (the number of linear transformations) rather than CPU 
and IO in the eigenvalue algorithm. Therefore, if possible within the external con- 
straints (memory, disk space), we prefer to keep all trial vectors in the reduced 
space. In cases where vectors with no or very little importance can be isolated these 
can be discarded without effecting the total convergence. In less fortunate cases the 
reduction of the number of trialvectors can result in extra iterations. 

The stable and efficient convergence has been obtained by always adding pairs of 
trial vectors to the reduced space such that the reduced space matrices maintain the 
paired structure of the full matrices. This is important as the roots of the reduced 
eigenvalue equation will then monotonically converge to the roots of the linear 
response eigenvalue equation. Recall that it does not require additional linear trans- 
formations to include the paired trial vectors. The paired structure also guarantees 
that complex roots cannot be obtained in the reduced space. In previously used 
iterative algorithms complex roots have occasionally shown up. 

When solving the linear response equations for frequency dependent properties 
we have demonstrated the economy of reusing trial vectors from one frequency at 
new frequencies. We have also shown that for frequencies near resonances the near 
singularity contribution can be removed by including the trial vectors of the 
resonance eigenvalue among the initial trial vectors. We have thus developed a very 
efficient and numerically stable algorithm for finding the solution vectors of linear 
response eigenvalue and linear equations directly, without explicit construction of 
the large matrices. We believe this algorithm will be very important for the future 
development of large scale linear and nonlinear response calculations. 

APPENDIX: THE LR EIGENVALUE ALGORITHM 

To elucidate implementation this Appendix contains a detailed step-by-step 
description of the linear response eigenvalue algorithm which was verbally 
described and discussed in Section 1II.a. We use here “ # ” to denote the paired 
vector 

ifXj= then X,? = 

The other matrices and vectors used below are defined in Section 1I.a. A step-by- 
step description of the LR property algorithm in Section 1I.b is obtained by reading 
“set of linear equations” instead of “eigenvalue equation” below (K may be greater 
than one if several properties are solved for). 

PROBLEM. Determine the K first excitation energies to a residual tolerance of 
t (e.g., t = 10e3). 
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Initialization. 

(a) Select k 2 K. 

(b) Select a set Uk= {b,, b?,..., &, b:} of initial trial vectors. 
(c) Set p = 0. 

Iteration (n = 0, 1, 2, . ..). 

(a) Calculate {gi = (” B B ,)biymi=(T!d fz)bi;i=P+l,p+k}. - - 
(b) Save {bi, gi, mi; i = p + 1, p + k} in memory or on external storage (for 

steps (c) and (g)). 
(c) Extend the reduced eigenvalue equation with { bi, b# ; i = p + 1, p + k}. 

(d) Set p=p+k. 

(e) Solve reduced eigenvalue equation of dimension 2~. 
(f) Select k 2 K. 

(g) Calculate the residual vectors Bj, j= 1, k for nonconverged roots. 
(h) Test for convergence: Il&jll 4 t. Decrement k with one for each converged 

root. If the K lowest roots are converged then exit, otherwise continue to (i) with 
the k Bj-vectors associated with nonconverged roots. 

(i) Calculate hp+j=Q,:lBj, j= 1, k. 

(j) Gram-Schmidt orthonormalize these new trial vector pairs to previous 
trial vectors UP and symmetrically orthonormalize them to each other. Omit any 
linear dependent { bj, b,? } pairs and decrement k by one for each linear dependent 
pair. 

(k) If k = 0 then error exit; otherwise go back to (a) for next iteration with 
n=n+l. 

If desired because space requirements dictate so, or because the I/O involved 
becomes significant, it is possible to restart as in the Davidson algorithm [ 141 or to 
only keep a small number of vectors in the reduced basis as in Ref. [lS]. 
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